Jump to contents

Researcher Information

last modified:2024/03/06

Associate Professor MARUYAMA, Takeo

Mail Laboratory Website

Faculty, Affiliation

Faculty of Electrical, Information and Communication Engineering,Institute of Science and Engineering

College and School Educational Field

Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology
Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology
Course in Electrical and Electronic Engineering, School of Electrical, Information and Communication Engineering, College of Science and Engineering

Laboratory

 TEL:076-234-4886 FAX:076-234-4870

Academic Background

【Academic background(Doctoral/Master's Degree)】
Tokyo Institute of Technology Doctor Graduate School, Division of Science and Engineering Department of Physical Electronics 200203 Completed
【Academic background(Bachelor's Degree)】
Tokyo Institute of Technology Department of Electrical Electronic Engineering 199703
【Degree】
Doctor of Engineering

Career

Tokyo Institute of Technology Research Center for Quantum Effect Elect Research Associate(2002/04/01-2004/03/31)
Tokyo Institute of Technology Quantum Nanoelectronics Research Center Research Associate(2004/04/01-2007/03/31)
Tokyo Institute of Technology Quantum Nanoelectronics Research Center Assistant Professor(2007/04/01-2008/03/31)
Kanazawa University(2008/04/01-)

Year & Month of Birth

1972/12

Academic Society

The Institute of electronics, Information and Communication Engineers

The Laser Society of Japan

The Institute of electronics, Information and Communication Engineers
The Institute of electronics, Information and Communication Engineers
The Institute of electronics, Information and Communication Engineers
the Japan Society of Applied Physics
the Japan Society of Applied Physics
the Japan Society of Applied Physics
IEEE
The Institute of electronics, Information and Communication Engineers
the Japan Society of Applied Physics
The Institute of electronics, Information and Communication Engineers

Award

○Hiroshi Ando Memorial Young Engineer Award(2008/06/21)

Specialities

Electron device/Electronic equipment、Communication/Network engineering

Speciality Keywords

Optoelectronics, Silicon Photonics, Optical Wireless Power Transmission, Semiconductor Devices

Research Themes

Optical Wireless Power Transmission

Silicon Optical Waveguide fabricated by CMOS Compatible Processes

High Speed Photodetector Fabricated by CMOS Compatible Process

Books

Papers

  •  Optical-loss measurement of a silicon-slab waveguide, W. P. Tresna, A. W. S. Putra, and T. Maruyama, Current Optics and Photonics 4 6 551-557 2020/12/25
  •  Infrared LED marker for target recognition in indoor and outdoor applications of optical wireless power transmission system A. W. S. Putra, H. Kato, and T. Maruyama Japanese Journal of Applied Physics 59 SO SOOD06 2020/06/15
  •  Propagation loss on a Si-Slab Waveguide: Simulation revisited Wlidan Panji Tresna, Takeo Maruyama Journal of Physics and Its Applications 2 1 76-78 2019/12
  •  Optical Wireless Power Transmission to Moving Objects Using Image Recognition Takeo Maruyama The Review of Laser Engineering 46 12 702-705 2018/12
  •  Optical Wireless Power Transmission Using Si Photovoltaic Through Air, Water and Skin Alexander William Setiawan Putra , Motoharu Tanizawa, Takeo Maruyama IEEE Photonics Technology Letters 31 2 157-160 2019/01

show all

  •  High Speed and High Responsivity Avalanche Photodiode Fabricated by Standard CMOS Process in Blue Wavelength Region Koichi Iiyama, Takeo Maruyama, Ryoichi Gyobu, Takuya Hishiki, Toshiyuki Shimotori IEICE Transactions on Electronics E101C 7 574-580 2018/07
  •  Theoretical Comparison of Noise Characteristics in Semiconductor and Fiber Optical Amplifiers Alexander William Setiawan Putra , Minoru Yamada, Sumiaty Ambran, Takeo Maruyama IEEE Photonics Technology Letters 30 8 756-759 2018/04
  •  Characterizing Silicon Avalanche Photodiode Fabricated by Standard 0.18µm CMOS Process for High-Speed Operation Z. A. F. M. Napiah, R. Gyobu, T. Hishiki, T. Maruyama, K. Iiyama IEICE TRANSACTIONS on Electronics E99-C 12 1304-1311 2016/12/01
  •  Over 10 GHz Lateral Silicon Photodetector Fabricated on Silicon-on-insulator Substrate by CMOS-compatible Process Gen Li, Takeo Maruyama, Koichi Iiyama JAPANESE JOURNAL OF APPLIED PHYSICS 54 4S 04DG06 2015/03
  •  Reduction of Wavelength Dependence of Coupling Characteristics Using Si Optical Waveguide Curved Directional Coupler Hisayasu Morino, Takeo Maruyama, Koichi Iiyama JOURNAL OF LIGHTWAVE TECHNOLOGY 32 12 2188 2014/07
  •  Low-propagation-loss Ta2O5 Optical Waveguides on Silica Substrate Gen Li, Takeo Maruyama, Koichi Iiyama JAPANESE JOURNAL OF APPLIED PHYSICS 53 4S 04EG12 2014/03
  •  GHz Response of Metamorphic InAlAs Metal-semiconductor-metal Photodetector on GaAs Substrate Kazuaki Maekita, Takeo Maruyama, Koichi Iiyama, Toshikazu Suzuki, JAPANESE JOURNAL OF APPLIED PHYSICS 53 2S 02BC16 2014/02
  •  High-efficiency Optical Coupling to Planar Photodiode using Metal Reflector loaded Waveguide Grating Coupler Gen Li, Takeo Maruyama, Koichi Iiyama OPTICAL AND QUANTUM ELECTRONICS 45 7 657-663 2013/07
  •  GaInAsP/InP quantum wire lasers S. Arai, N. Nishiyama, T. Maruyama and T. Okumura IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 17 5 1381-1389 2011/09
  •  High-resolution FMCW reflectometry using a single-mode vertical-cavity surface-emitting laser IEEE PHOTONICS TECHNOLOGY LETTERS 23 11 703-705 2011/07
  •  Hole-injection-type and electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18 μm CMOS process IEEE PHOTONICS TECHNOLOGY LETTERS 22 12 932-934 2010/06
  •  Mach-Zehnder interferometric optical switch with MEMS phase shifter  Makoto Inamoto, Takeo Maruyama, Koichi Iiyama OPTICAL AND QUANTUM ELECTRONICS 41 8 599-604 2009/06
  •  Polarization anisotropy of spontaneous emission spectra in GaInAsP/InP quantum-wire structures JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REV 47 5 3735-3741 2008/05
  •  Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama and S. Arai OPTICS EXPRESS 17 15 12564-12570 2009/07
  •  GaInAsP/InP quantum wire lasers S. Arai and T. Maruyama IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 15 3 731-742 2009/05
  •  Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60 K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama and S. Arai JAPANESE JOURNAL OF APPLIED PHYSICS 48 3 030208(3pages) 2009/03
  •  Injection-type GaInAsP-InP-Si distributed-feedback laser directly bonded on silicon-on-insulator substrate T. Okumura, T. Maruyama, H. Yonezawa, N. Nishiyama and S. Arai IEEE PHOTONICS TECHNOLOGY LETTERS 21 5 283-285 2009/03
  •  GaInAsP/InP membrane BH-DFB laser with air-bridge structure H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama and S. Arai JAPANESE JOURNAL OF APPLIED PHYSICS 46 47 L1158-L1160 2007/12
  •  Single-Mode Operation of GaInAsP/InP-Membrane Distributed Feedback (DFB) Lasers Bonded on Silicon-on-Insulator (SOI) Substrate with Rib-Waveguide Structure T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, S. Arai JAPANESE JOURNAL OF APPLIED PHYSICS 46 48 L1206-L1208 2007/12
  •  Micro-photoluminescence characterizations of GaInAsP/InP single quantum wires fabricated by dry etching and regrowth H. Itoh, M. Yoshita, H. Akiyama, D. Plumwongrot, T. Maruyama and S. Arai JOURNAL OF APPLIED PHYSICS 102 9 093509(5pages) 2007/11
  •  85 oC continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding Layer S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama and S. Arai JAPANESE JOURNAL OF APPLIED PHYSICS 46 47 L1158-L1160 2007/11
  •  Bragg wavelength detuning in GaInAsP/InP DFB lasers with wirelike active regions D. Plumwongrot, Y. Nishimoto, S. M. Ullah, Y. Tamura, M. Kurokawa, T. Maruyama, N. Nishiyama and S. Arai JAPANESE JOURNAL OF APPLIED PHYSICS 46 45 L1090-L1092 2007/11
  •  Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama and S. Arai IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 13 5  1135-1141 2007/09
  •  Fabrication and characterization of amorphous polyethylene terephthalate optical waveguides Koichi Iiyama, Terumasa Ishida, Y. Ono, Takeo Maruyama, T. Yamagishi, IEEE PHOTONICS TECHNOLOGY LETTERS 23 5 275-277 2011/05
  •  Reduced temperature dependence of lasing wavelength in membrane BH-DFB lasers with polymer cladding layers S. Sakamoto, H. Kawashima, H. Naitoh, S. Tamura, T. Maruyama and S. Arai IEEE PHOTONICS TECHNOLOGY LETTERS 19 5 291-293 2007/03
  •  GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate T. Maruyama, T. Okumura, S. Sakamoto, K. Miura,Y. Nishimoto and S. Arai OPTICS EXPRESS 16 14 8184-8188 2006/09
  •  High T0 operation of 1590 nm GaInAsP/InP quantum-wire distributed feedback lasers by Bragg wavelength detuning Y. Nishimoto, H. Yagi, K. Miura, D. Plumwongrot, K. Ohira, T. Maruyama and S. Arai JAPANESE JOURNAL OF APPLIED PHYSICS 46 17 L411-L413 2007/04
  •  Direct wafer bonding of GaInAsP/InP membrane structure on silicon-on-insulator substrate T. Maruyama, T. Okumura and S. Arai JAPANESE JOURNAL OF APPLIED PHYSICS 45 11 8717-8718 2006/11
  •  Low-threshold current density GaInAsP/InP quantum-wire distributed feedback lasers fabricated by low-damage processes Y. Nishimoto, K. Miura, H. Yagi, D. Plumwongrot, K. Ohira, T. Maruyama, S. Arai JAPANESE JOURNAL OF APPLIED PHYSICS 46 2 L34-L36 2007/02

Conference Presentations

  • Analysis of SiN Optical Waveguide for 2D Beam Steering(2023/03/15)
  • Design and Analysis of SiN Optical Waveguide for 2D Beam Steering(2022/12/03)
  • Optical Wireless Power (~1W) and Data (~1GHz) Transmission for Meter-range Distance using Hybrid Laser Beam System(2022/03/26)
  • Hybrid Optical Wireless Power (~1W) and Data (~1GHz) Transmission System for Meter-range Distance(conference:the 4th Optical Wireless and Fiber Power Transmission (OWPT2022))(2022/04/19)
  • Improvement of Position Prediction for Optical Wireless Power Transmission System using Machine Learning(2021/03/19)

show all

  • Optical Wireless Power Transfer for Moving Object(conference:the 6th International Symposium on Frontiers of Applied Physics (ISFAP2021))(2021/10/06)
  • Moving Target Position Prediction for Optical Wireless Power Transmission System using Machine Learning(conference:the 3rd Optical Wireless and Fiber Power Transmission (OWPT2021))(2021/04/22)
  • Target Recognition for Outdoor Optical Wireless Power Transmission Using Solar-Blind Deep UV LED marker(conference:the 3rd Optical Wireless and Fiber Power Transmission (OWPT2021))(2021/04/20)
  • OWPT (Optical Wireless Power Transmission) by image-guided laser-beam steering(conference:SPIE Photonics West 2021, OPT)(2021/03/05)
  • Hybrid Optical Wireless Power and Data Transmission System(conference:IEEE MTT-S Wireless Power Transfer Conference 2020 (WPTC2020))(2020/11/17)
  • Demonstration of Hybrid Optical Wireless Power Transmission and Free Space Optical Communication System using Dichroic Mirrors(conference:The 2nd Optical Wireless and Fiber Power Transmission Conference (OWPT2020))(2020/04)
  • SiNx光導波路集積ダイヤモンドセンサ構造の設計(2020/09/09)
  • Solar-Blind UV LED Marker for Indoor and Outdoor Applications of Optical Wireless Power Transmissio(conference:2020年 第81回応用物理学会秋季学術講演会)(2020/09/09)
  • Optical wireless power transmission to moving object using Galvano mirror(conference:SPIE Photonics West 2020)(2020/02)
  • >1 W Power and 10 MHz Data Transmission in Hybrid Free Space Optical Communication and Optical Wireless Power Transmission(conference:The 67th JSAP Spring Meeting)(2020/03)
  • Infrared LED marker for target recognition in optical wireless power transmission to moving object at dark environment condition(conference:24th Microoptics Conference (MOC2019))(2019/11)
  • Optical wireless power transmission through water(conference:The 1st Optical Wireless and Fiber Power Transmission Conference (OWPT2019))(2019/04)
  • Object recognition and beam steering system for optical wireless power transmission to moving object(conference:The 1st Optical Wireless and Fiber Power Transmission Conference (OWPT2019))(2019/04)
  • Optical Slab Waveguide Using SOI Substrate(2018/06/22)
  • Reflections of the Optical Si Slab Waveguide(conference:IEICE Society Conference 2018)(2018/09/11)
  • Object Tracking Using Single Camera for Optical Wireless Power Transmission to Two-Dimensional Moving Object(conference:IEICE Society Conference 2018)(2018/09/11)
  • Optical Wireless Power Transmission to Multiple Moving Objects Using Computer Vision(conference:The 66th JSAP Spring Meeting)(2019/03/11)
  • Optical Wireless Power Transmission Through Water(conference:IEICE General Conference 2019)(2019/03/22)
  • Optical Wireless Power Transmission for Moving Objects(conference:IEICE General Conference 2019)(2019/03/19)
  • Polarization Dependency Characteristics of the Optical Si Slab Waveguide(conference:IEICE General Conference 2019)(2019/03/22)
  • A Technique of Error Position Reduction on Beam Steering System by using Computer Vision for Optical Wireless Power Transfer(conference:The 79th JSAP Autum Meeting)(2018/09/18)
  • System Efficiency Analysis of Optical Wireless PowerTransfer Using Silicon Photovoltaic Through Carious Mediums(2018/05/24)
  • Optical Wireless Power Transmission to Moving Object by Computer Vision(2018/05/24)
  • Beam Steering System of Semiconductor Laser Diode for Optical Wireless Power Transmission(2017/05/18)
  • Waveguide losses and Mirror losses in Si Optical Slab Waveguide(conference:The 65th JSAP Spring Meeting)(2018/03/20)
  • Enhancement of Beam Steering System Speed towards Optical Wireless Power Transmission for Mobile Object(conference:The 65th JSAP Spring Meeting)(2018/03/19)
  • Numerical Calculation of System Efficiency of Optical Wireless Power Transmission Using Silicon Photovoltaic Through Various Mediums(conference:The 65th JSAP Spring Meeting)(2018/03/19)
  • Sub-um Electrode Spacing SOI-PIN Photodiode Fabricated by CMOS Compatible Process(conference:21st OptoElectronics and Communications Conference (OECC 2016))(2016/07/06)

Others

Arts and Fieldwork

Patent

Theme to the desired joint research

○Optoelectronics

Grant-in-Aid for Scientific Research

○「移動体への光無線給電と光空間通信のハイブリッドシステムの構築」(2020-2022) 
○「CMOSプロセスを用いた超高速シリコンモノリシック光レシーバの開発」(2015-2017) 
○「超高速シリコン光検出器とLSIを集積させたモノリシック光レシーバの開発」
○「アモルファス/結晶ハイブリッド型シリコン光集積回路」(2012-2013)
○「アモルファス/結晶ハイブリッド型シリコン光集積回路」(2012-2013) 
○「Si系LSI内広帯域配線層の為のInP系メンブレン光・電子デバイス」(2007-2011) 
○「SOI導波路上単一モード半導体薄膜レーザに関する研究」(2007-) 
○「薄膜半導体光導波路を有する低次元量子井戸レーザに関する研究」(2005-) 
○「量子ナノ構造を用いる低消費電力・高機能単一波長半導体レーザの研究」(2005-) 

Competitive research funding,Contribution

Collaborative research,Consignment study

Classes (Bachelors)

○Electrical and Electronic Engineering Laboratory I(2022)
○Opt-Electronics A(2022)
○Electrical and Electronic Engineering Laboratory I(2022)
○Opt-Electronics B(2022)
○Electromagnetic Theory and Exercise A(2022)
○Electromagnetic Theory and Exercise B(2022)
○Electromagnetic Theory and Exercise B(2022)
○Electromagnetic Theory and Exercise A(2022)
○Opt-Electronics B(2021)
○Opt-Electronics A(2021)
○Electrical and Electronic Engineering Laboratory I(2021)
○Electromagnetic Theory and Exercise B(2021)
○Electromagnetic Theory and Exercise A(2021)
○Electromagnetic Theory and Exercise A(2021)
○Electromagnetic Theory and Exercise B(2021)
○Electrical and Electronic Engineering Laboratory I(2020)
○Opt-Electronics B(2020)
○Electromagnetic Theory and Exercise A(2020)
○Opt-Electronics A(2020)
○Electromagnetic Theory and Exercise A(2020)
○Electromagnetic Theory and Exercise B(2020)
○Electromagnetic Theory and Exercise B(2020)
○Introduction of Electric, Communication, and Information Engineering(2020)
○Electrical and Electronic Engineering Laboratory I(2019)
○Presentation and Debate (Freshman Seminar II)(2019)
○Electrical and Electronic Engineering Laboratory I(2019)
○Electromagnetic Theory and Exercise A(2019)
○Electromagnetic Theory and Exercise A(2019)
○Electromagnetic Theory 1 and Exercise(2019)
○Electromagnetic Theory and Exercise B(2019)
○Introduction of Electric, Communication, and Information Engineering(2019)
○Lecture on Life in Campus and Society(2018)
○Presentation and Debate (Freshman Seminar II)(2018)
○Electromagnetic Theory 1 and Exercise(2018)
○Mechanics(2018)
○Electrical and Electronic Engineering Laboratory I(2018)
○Research Project(2018)
○Presentation and Debate (Freshman Seminar II)(2017)
○Freshman Seminar I(2017)
○Presentation and Debate (Freshman Seminar II)(2017)
○Research Project(2017)
○Electrical and Electronic Engineering Laboratory I(2017)
○Electromagnetic Theory 1 and Exercise(2017)
○Mechanics(2017)
○Presentation and Debate (Freshman Seminar II)(2017)
○Presentation and Debate (Freshman Seminar II)(2017)
○Freshman Seminar I(2017)
○Electromagnetic Theory 1 and Exercise(2016)
○Introduction to Electronics, Computer Engineering and Bioinformatics A(2016)
○Electrical and Electronic Engineering Laboratory I(2016)
○Freshman Seminar I(2016)
○Mechanics(2016)
○Presentation and Debate (Freshman Seminar II)(2016)
○Presentation and Debate (Freshman Seminar II)(2016)
○Freshman Seminar I(2016)

Classes (Graduate Schools)

○Theory of Optical Integrated Circuits(2022)
○Theory of Optical Integrated Circuits(2022)
○Lightwave Engineering A(2022)
○Introduction to Advanced Electric Power Conversion Engineering B(2022)
○Lightwave Engineering B(2022)
○Introduction to Advanced Electric Power Conversion Engineering A(2022)
○Lightwave Engineering A(2022)
○Introduction to Advanced Electric Power Conversion Engineering B(2022)
○Introduction to Electric Power Conversion Engineering A(2022)
○Lightwave Engineering B(2022)
○Introduction to Advanced Electric Power Conversion Engineering A(2022)
○Introduction to Electric Power Conversion Engineering B(2022)
○Introduction to Environmental and Energy Engineering B(2022)
○Introduction to Environmental and Energy Engineering B(2022)
○Introduction to Advanced Electric Power Conversion Engineering B(2022)
○Introduction to Advanced Electric Power Conversion Engineering A(2022)
○Introduction to Nanomatarials Science(2022)
○Introduction to Nanomatarials Science(2022)
○Mathematical/Nanomaterial Science and Engineering(2022)
○Lightwave Engineering b(2021)
○Introduction to Advanced Electric Power Conversion Engineering B(2021)
○Introduction to Advanced Electric Power Conversion Engineering A(2021)
○Lightwave Engineering B(2021)
○Theory of Optical Integrated Circuits(2021)
○Theory of Optical Integrated Circuits(2021)
○Introduction to Electrical Engineering and Computer Science(2021)
○Lightwave Engineering B(2021)
○Lightwave Engineering b(2021)
○Lightwave Engineering b(2020)
○Theory of Optical Integrated Circuits(2020)
○Theory of Optical Integrated Circuits(2020)
○Theory of Optical Integrated Circuits(2020)
○Theory of Optical Integrated Circuits(2020)
○Introduction to Electrical Engineering and Computer Science(2020)
○Introduction to Electrical Engineering and Computer Science(2020)
○Introduction to Electrical Engineering and Computer Science(2020)
○Lightwave Engineering B(2020)
○Lightwave Engineering(2019)
○Lightwave Engineering B(2019)
○Introduction to Electrical Engineering and Computer Science(2019)
○Introduction to Electrical Engineering and Computer Science(2019)
○Introduction to Electrical Engineering and Computer Science(2019)
○Theory of Optical Integrated Circuits(2019)
○Introduction to Electrical Engineering and Computer Science(2019)
○Theory of Optical Integrated Circuits(2019)
○Theory of Optical Integrated Circuits(2019)
○Theory of Optical Integrated Circuits(2019)
○Lightwave Engineering B(2018)
○Fostering the independence of researchers(2018)
○Introduction to Electrical Engineering and Computer Science(2018)
○Research Ethics(2018)
○Theory of Optical Integrated Circuits(2018)
○Lightwave Engineering B(2017)
○Fostering the independence of researchers(2017)
○Theory of Optical Integrated Circuits(2017)
○Theory of Optical Integrated Circuits(2017)
○Theory of Optical Integrated Circuits(2017)
○Theory of Optical Integrated Circuits(2017)
○Fostering the independence of researchers(2017)
○Theory of Optical Integrated Circuits(2016)
○Lightwave Engineering B(2016)

International Project

International Students

Lecture themes

○Optical Communication
○Optical device
○Semiconductor

Others (Social Activities)

To Page Top