Jump to contents

Researcher Information

last modified:2024/12/04

Assistant Professor OKABAYASHI, Norio

Mail

Faculty, Affiliation

Faculty of Mathematics and Physics, Institute of Science and Engineering

College and School Educational Field

Division of Mathematical and Physical Science, Graduate School of Natural Science and Technology
Course in Physics, School of Mathematics and Physics, College of Science and Engineering

Laboratory

Nanophysics Laboratory TEL:076-264-5666 FAX:076-264-5739

Academic Background

【Academic background(Doctoral/Master's Degree)】
The University of Tokyo Doctor 200403 Completed
【Academic background(Bachelor's Degree)】
The University of Tokyo 199703
【Degree】
Doctor of Philosophy

Career

RIKEN, Junior Research Associate(2000/04/01-2003/03/31)
Toyota Technological Institute Postdoctoral fellow(2004/04/01-2005/03/31)
Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Postdoctoral Fellow(2005/04/01-2010/03/31)
Tokyo Institute of Technology, Materials & Structures Laboratory, Assistant Professor(2010/04/01-2012/03/31)

Year & Month of Birth

1974/05

Academic Society

The Physical Society of Japan
The Surface Science Society of Japan

Award

The Surface Science Society of Japan

Specialities

Thin film/Surface and interfacial physical properties、Condensed matter physics I

Speciality Keywords

Surface Science, Scanning Probe Microscope, Tribology

Research Themes

Understanding the origin of friction at the atomic level and investigating its control

Relationship between structure change of a molecule and energy dissipation

Vibrational spectroscopy of a single molecule in an external force field

Books

  •  Komeda Tadahiro and Norio Okabayashi Springer Handbook of Surface Science : Spatially Resolved Surface Vibrational Spectroscopies Springer Cham 2021/02

Papers

  •  Energy dissipation of a carbon monoxide molecule manipulated using a metallic tip on copper surfaces  Norio Okabayashi, Thomas Frederiksen, Alexander Liebig, Franz J. Giessibl  PHYSICAL REVIEW B 108 165401 2023/10
  •  Dynamic friction unraveled by observing an unexpected intermediate state in controlled molecular manipulation  Norio Okabayashi, Thomas Frederiksen, Alexander Liebig, Franz J. Giessibl  PHYSICAL REVIEW LETTERS 131 148001 2023/10
  •  Radio frequency filter for an enhanced resolution of inelastic electron tunneling spectroscopy in a combined scanning tunneling- and atomic force microscope Angelo Peronio, Norio Okabayashi, Florian Griesbeck, and Franz J. Giessibl Review of Scientific Instruments 90 123104 2019/12
  •  Vibrations of a molecule in an external force field Norio Okabayashi, Angelo Peronio, Magnus Paulsson, Toyoko Arai, and Franz J. Giessibl Proceedings of the National Academy of Sciences of the United States of America 115 4571-4576 2018/04
  •  Analysis of STM images with pure and CO-functionalized tips: A first-principles and experimental study Alexander Gustafsson, Norio Okabayashi, Angelo Peronio, Franz J. Giessibl, and Magnus Paulsson PHYSICAL REVIEW B 96 085415-8 2017/08

show all

  •  Influence of atomic tip structure on the intensity of inelastic tunneling spectroscopy data analyzed by combined scanning tunneling spectroscopy, force microscopy, and density functional theory  Norio Okabayashi, Alexander Gustafsson, Angelo Peronio, Magnus Paulsson, Toyoko Arai, and Franz J. Giessibl PHYSICAL REVIEW B 93 165415-6 2016/04
  •  Force field analysis suggests a lowering of diffusion barriers in atomic manipulation due to presence of STM tip Matthias Emmrich, Maximilian Schneiderbauer, Ferdinand Huber, Alfred J. Weymouth, Norio Okabayashi, and Franz J. Giessibl PHYSICAL REVIEW LETTERS 114 146101-5 2015/01
  •  Inelastic electron tunneling process for alkanethiol self-assembled monolayers Norio Okabayashi, Magnus Paulsson, Tadahiro Komeda PROGRESS IN SURFACE SCIENCE 88 1-38 2013/02
  •  Logic Operations of Chemically Assembled Single-Electron Transistor Kosuke Maeda, Norio Okabayashi, Shinya Kano, Shuhei Takeshita, Daisuke Tanaka, Masanori Sakamoto, Toshiharu Teranishi, and Yutaka Majima ACS NANO 6 2798 2012/03
  •  Uniform charging energy of single-electron transistors by using size-controlled Au nanoparticles Norio Okabayashi, Kosuke Maeda, Taro Muraki, Daisuke Tanaka, Masanori Sakamoto, Toshiharu Teranishi, and Yutaka Majima APPLIED PHYSICS LETTERS 100 033101 2012/01
  •  Enhanced sputtering from the F/Si(100) surface with extraction of the surface bond direction Norio Okabayashi, Ken-ichiro Komaki and Yasunori Yamazaki PHYSICAL REVIEW LETTERS 107 113201-4 2011/09
  •  Nanoparticle Single-Electron Transistor with Metal-Bridged Top-Gate and Nanogap Electrodes Yasuo Azuma, Seiichi Suzuki, Kosuke Maeda, Norio Okabayashi, Daisuke Tanaka, Toshiharu Teranishi, Mark R. Buitelaar, Charles G. Smith, and Yutaka Majima APPLIED PHYSICS LETTERS 99 073109 2011/08
  •  Selection Rule of Inelastic Electron Tunneling Spectroscopy Probed by Isotope Substitution Norio Okabayashi, Magnus Paulsson, Hiromu Ueba, Youhei Konda, and Tadahiro Komeda Hyomen Kagaku 32 374 2011/02
  •  Identification of a deuterated alkanethiol inserted in a hydrogenated alkanethiol self-assembled monolayer by mapping of an inelastic tunneling signal Norio Okabayashi and Tadahiro Komeda REVIEW OF SCIENTIFIC INSTRUMENTS 81 084101 2010/08
  •  Inelastic tunneling spectroscopy of alkanethiol molecules: high resolution spectroscopy and theoretical simulations Norio Okabayashi, Magnus Paulsson, Hiromu Ueba, Youhei Konda, and Tadahiro Komeda PHYSICAL REVIEW LETTERS 104 077801-4 2010/02
  •  Site Selective Inelastic Electron Tunneling Spectroscopy Probed by Isotope Labeling Norio Okabayashi, Magnus Paulsson, Hiromu Ueba, Youhei Konda, and Tadahiro Komeda NANO LETTERS 10 2950 2010/07
  •  Inelastic electron tunneling spectroscopy with a dilution refrigerator based scanning tunneling microscope Norio Okabayashi and Tadahiro Komeda MEASUREMENT SCIENCE & TECHNOLOGY 20 095602 2009/08
  •  Identification of a deuterated alkanethiol inserted in a hydrogenated alkanethiol self-assembled monolayer by mapping of an inelastic tunneling signal Norio Okabayashi and Tadahiro Komeda Hyomen Kagaku 30 293 2009/05
  •   Inelastic electron tunneling spectroscopy of an alkanethiol self-assembled monolayer using scanning tunneling microscopy Norio Okabayashi, Youhei Konda, and Tadahiro Komeda PHYSICAL REVIEW LETTERS 100 217801-4 2008/05
  •  Energy- and angular- distributions of F+ ions emitted from a F-terminated Si(100) surface with slow highly-charged ions N. Okabayashi, K. Komaki, and Y. Yamazaki NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B 235 438 2005/05
  •  Potential sputtering and kinetic sputtering from a water adsorbed Si(100) surface with slow highly-charged ions N. Okabayashi, K. Komaki, and Y. Yamazaki NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B 232  244 2005/05
  •  Secondary ion emission from a water and fluorine adsorbed Si(100) surface irradiated with electrons and highly charged ions N. Okabayashi, K. Komaki, and Y. Yamazaki NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B 205 725 2003/01
  •  Potential sputtering of proton from hydrogen-terminated Si(100) surfaces induced with slow highly charged ions K. Kuroki, N. Okabayashi, H. Torii, K. Komaki, and Y. Yamazaki APPLIED PHYSICS LETTERS 81 3561 2002/11
  •  Charge State Dependence of Proton Sputtering from Solid Surfaces with Slow Highly Charged Ions K. Kuroki, T. Takahira, Y. Tsuruta, N. Okabayashi, T. Azuma, K. Komaki, and Y. Yamazaki PHYSICA SCRIPTA T80 557 1999/11
  •  Measurements of Potential Sputtered H+ with 2D Position Sensitive Detector N. Okabayashi, K. Kuroki, Y. Tsuruta, T. Azuma, K. Komaki, and Y. Yamazaki PHYSICA SCRIPTA T80 555 1999/11
  •  Dynamic friction unraveled using an atomically defined model system Norio Okabayashi, Thomas Frederiksen, Alexander Liebig, Franz J. Giessibl arXiv:2112.12286 2021/12

Conference Presentations

  • Dynamics of a molecular manipulation with a metallic tip(conference:The 10th international Symposium on Surface Science)(2024/10/22)
  • Dynamic Friction Unraveled by Observing an Unexpected Intermediate State in Controlled Molecular Manipulation(conference:Spring meeting of German Physical Society 2024)(2024/03/19)
  • Dynamic friction in controlled molecular manipulation(conference:Symposium on Surface Science 2024)(2024/03/11)
  • Dynamic friction in controlled molecular manipulation(conference:Atomic Level Characterizations Winter Meeting 2024)(2024/01/18)
  • Dynamic friction in controlled molecular manipulation(conference:Annual Meeting of the Japan Society of Vacuum and Surface Science 2023)(2023/10/31)

show all

  • Interaction between a metallic STM tip and a single CO molecule adsorbed on a copper surface(conference:Spring meeting of German Physical Society 2019)(2019/04/01)
  • Tip induced configuration change of a single CO molecule on a copper surface(conference:Chair's Seminar in Regensburg University)(2019/03/28)
  • Vibrational energies of a single CO molecule in an external force field(conference:Seminar in Fritz Haber institute)(2019/03/20)
  • Vibrational energies of a CO molecule on a Cu(111) and a Cu(110) surface investigated by AFM and IETS(conference:Chair's Seminar in Regensburg University)(2018/12/21)
  • Investigation of inelastic electron tunneling process by combining STM and AFM(conference:Seminar in Donostia International Physics Center,)(2018/11/07)
  • Reaction of a CO molecule on a surface to a metallic tip(conference:14th International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures in conjunction with 26th International Colloquium on Scanning Probe Microscopy)(2018/10/23)
  • Breaking the bond between a CO molecule and a copper surface with a metallic tip(conference:The 21st International Conference on Non-contact Atomic Force Microscopy, Porvoo, Finland)(2018/09/18)
  • Interaction process of a CO molecule on a copper surface with a metallic tip of a microscope(conference:Spring meeting of German Physical Society 2018)(2018/03/13)
  • Vibrational state of a single molecule influenced by the force from a tip(conference: 5th Ito International Research Center Conference)(2017/11/25)
  • Inelastic Electron Tunneling Spectroscopy of Single CO Molecules Combining Atomic Force Microscopy(conference:The 8th International Symposium on Surface Science)(2017/10/25)
  • Bond weakening between an adsorbed molecule and a surface induced by the presence of a probe tip(conference:20th International Conference on Non-Contact Atomic Force Microscopy)(2017/09/25)
  • Influence of external forces on the vibrations of an adsorbed molecule(conference:Spring meeting of German Physical Society)(2017/03/23)
  • Influence of the atomic-scale tip apex on the IETS vibrational spectroscopy of single molecules(conference:19th International Conference on Non-Contact Atomic Force Microscopy)(2016/07/27)

Others

  •  Preface: Proceedings of the 23rd International Workshop on Inelastic Ion-Surface Collisions (IISC-23) Tokihiro Ikeda, Norio Okabayashi, Yuji Nakano, Kazumasa Narumi, Markus Wilde, Mitsunori Kurahashi, Kunikazu Ishii, Manabu Saito Nuclear Instruments and Methods in Physics Research B 483 29-32 2020/11

Arts and Fieldwork

Patent

Theme to the desired joint research

○Understanding of an origin of friction at the atomic scale

Grant-in-Aid for Scientific Research

○「原子レベルでの摩擦の起源の解明とその制御」(2024-2026) 
○「分子の構造変化とエネルギー散逸の関係の解明」(2020-2023) 
○「力と振動分光による単一原子の元素識別」(2017-2019) 
○「力場中の単一分子の振動分光」(2016-2018) 
○「アルカンチオール自己組織化単分子膜をトンネルする電子の経路解明」(2013-2014) 
○「非弾性電子トンネル分光による三次元元素イメージング」(2011-2012) 

Competitive research funding,Contribution

Collaborative research,Consignment study

Classes (Bachelors)

○Exercise in Electromagnetism 2b(2023)
○Physics Experiments 2B(2023)
○Physics Experiments 2A(2023)
○Exercise in Electromagnetism 2a(2023)
○Physics Experiments 1B(2023)
○Physics Experiments 1A(2023)
○Academic Skills(2023)
○Presentation and Debate(2023)
○Fundamental Physics 2B(2023)
○Fundamental Physics 2A(2023)
○Experiments in Fundamental Physics(2023)
○Fundamental Physics 1B(2023)
○Experiments in Fundamental Physics(2023)
○Fundamental Physics 1A(2023)
○Exercise in Electromagnetism 2a(2022)
○Physics Experiments 2(2022)
○Exercise in Electromagnetism 2b(2022)
○Academic Skills(2022)
○Physics Experiments 1(2022)
○Physics Experiments 1(2022)
○Physics Experiments 2(2022)
○Presentation and Debate(2022)
○Fundamental Physics 2B(2022)
○Fundamental Physics 2A(2022)
○Experiments in Fundamental Physics(2022)
○Fundamental Physics 1B(2022)
○Experiments in Fundamental Physics(2022)
○Fundamental Physics 1A(2022)
○Fundamental Physics 2A(2021)
○Experiments in Fundamental Physics(2021)
○Fundamental Physics 1B(2021)
○Fundamental Physics 2B(2021)
○Fundamental Physics 1A(2021)
○Academic Skills(2021)
○Presentation and Debate(2021)
○Physics Experiments 1(2021)
○Exercise in Electromagnetism 2(2021)
○Physics Experiments 2(2021)
○Fundamental Physics 2(2020)
○Fundamental Physics 1B(2020)
○Fundamental Physics 1A(2020)
○Fundamental Physics 2B(2020)
○Fundamental Physics 2A(2020)
○Physics Experiments 2(2020)
○Exercise in Electromagnetism 2(2020)
○Physics Experiments 1(2020)
○Fundamental Physics 1(2020)
○Experiments in Fundamental Physics(2020)
○Experiments in Fundamental Physics(2019)
○Exercise in Electromagnetism 2(2019)
○Fundamental Physics 1(2019)
○Fundamental Physics 2(2019)
○Physics Experiments 2(2019)
○Physics Experiments 1(2019)
○Fundamental Physics 1(2018)
○Physics Experiments 2(2018)
○Exercise in Electromagnetism 2(2018)
○Physics Experiments 1(2018)
○Fundamental Physics 2(2018)
○Fundamental Physics 2(2017)
○Physics Experiments 2(2017)
○Experiments in Fundamental Physics(2017)
○Physics Experiments 1(2017)
○Fundamental Physics 2(2017)
○Exercise in Electromagnetism 2(2017)
○Fundamental Physics 1(2017)
○Fundamental Physics 1(2016)
○Fundamental Physics 2(2016)
○Exercise in Electromagnetism 2(2016)
○Physics Experiments 1(2016)
○Physics Experiments 2(2016)
○Presentation and Debate (Freshman Seminar II)(2016)
○Freshman Seminar I(2016)

Classes (Graduate Schools)

○Introduction to Condensed Matter Physics b(2023)
○Introduction to Condensed Matter Physics a(2023)
○Introduction to Condensed Matter Physics b(2022)
○Introduction to Condensed Matter Physics a(2022)
○Introduction to Condensed Matter Physics b(2021)
○Introduction to Condensed Matter Physics a(2021)
○Introduction to Condensed Matter Physics b(2020)
○Introduction to Condensed Matter Physics a(2020)
○Introduction to Condensed Matter Physics b(2019)
○Introduction to Condensed Matter Physics a(2019)
○Introduction to Condensed Matter Physics a(2018)
○Introduction to Condensed Matter Physics b(2018)
○Introduction to Condensed Matter Physics b(2017)
○Introduction to Condensed Matter Physics a(2017)
○Research Work B(2017)
○Seminar B(2017)
○Exercise B(2017)
○Introduction to Condensed Matter Physics a(2016)
○Introduction to Condensed Matter Physics b(2016)
○Seminar B(2016)
○Exercise B(2016)
○Research Work B(2016)

International Project

International Students

Lecture themes

Others (Social Activities)

To Page Top